China Good quality High-Pressure Oxygen Compressor 15-60nm3/H Air/Water-Cooled 4-Stage Compressed Oil-Free Medical and Industrial Use with Good quality

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Click Here

Product Description

High-pressure oxygen compressor 15-60Nm3/h Air/water-cooled 4-stage compressed oil-free Medical and Industrial use

Product Description

Product features

1.Touch display PLC control.
2.Remote control is optional.
3.Inlet and outlet pressure overload,temperature overheating,cooling water failure, circulation rolling alarm and stop.
4.Operation time display, maintenance cycle prompt.
5.With water tank and circulating pump without external pipeline, filling antifreeze at low temperature without obstruction.

 

 

Compressed media Nitrogen (must be dry and particle free)
Model VWN-60-5-16
Rated flow (standard state) 60Nm3/h
Intake air temperature ≤40
Intake pressure 0.5Mpa
Exhaust pressure 1.6Mpa
Cylinder diameter * quantity Φ90+φ65
Engine speed 470r/min
Cooling mode Air cooling
Lubrication method Fully oil-free lubrication
Compression series 2
Structural type Angle type, V type
Motor power 5.5kw
Transmission mode Belt drive
Installation type Basic type
Dual pressure controller Intake 4-6
Control mode Completely oil-free lubrication, air cooling, reciprocating piston type
Size of inlet and outlet RC1″
Dimensions  1250*500*900mm
Weight 280kg

Product Parameters

 

Compressed media
(General for oxygen and nitrogen)
Model Capacity
(Nm3/h)
Intake pressure
(MPa)
Exhaust pressure
(MPa)
Power
(kW)
Dimensions
(mm)
Oxygen/Nitrogen VW-0.33/5-25 20 0.5 2.5  1220*500*800
Oxygen/Nitrogen ZWN-3.6/4-8 3.6 0.4 0.8  0.75  750*500*650
Oxygen/Nitrogen VWN-10/5-25 10 0.5 2.5  1600*700*1500
Oxygen/Nitrogen VWN-60/5-16 60 0.5 1.6  5.5  1250*500*900
Oxygen/Nitrogen VWN-20/6-20 20 0.6 2.0  1250*600*900
Oxygen/Nitrogen VWN-20/5-25 20 0.5 2.5  1050*600*1000
Oxygen/Nitrogen VWN-40/7-25 40 0.7 2.5  1250*500*900
Oxygen/Nitrogen VWN-60/4-25 60 0.4 2.5  11  1250*700*900
Oxygen/Nitrogen WWN-80/4-25 80 0.4 2.5  11  1350*700*1200
Oxygen/Nitrogen VWN-80/7-25 80 0.7 2.5  7.5  1250*700*900
Oxygen/Nitrogen VWN-60/4-30 60 0.4 3.0  1250*500*900
Oxygen/Nitrogen VWN-50/4-30 50 0.4 3.0  7.5  1250*650*1000
Oxygen/Nitrogen VWN-80/5-30 80 0.5 3.0  11  1250*700*1000
Oxygen/Nitrogen VWN-30/5-35 30 0.5 3.5  5.5  1050*500*1000
Oxygen/Nitrogen VWN-50/5-35 50 0.5 3.5  7.5  1050*700*1000
Oxygen/Nitrogen VWN-40/5-40 40 0.5 4.0  7.5  1250*600*900
Oxygen/Nitrogen VWY-80/0.5-50 80 0.05 5.0  18.5  1250*700*900
Oxygen/Nitrogen VWND-55/5-8 55 0.5 0.8  1400*810*1300
Oxygen/Nitrogen VWN-60/5-10 60 0.5 1.0  1250*500*900
Oxygen/Nitrogen VWY-75/4-16 75 0.4 1.6  7.5  1050*500*1000
Oxygen/Nitrogen VWND-100/5-10 100 0.5 1.0  5.5  1400*930*1350
Oxygen/Nitrogen VWN-120/6-16 120 0.6 1.6  11  1250*700*1000
Oxygen/Nitrogen VWN-140/5-8 140 0.5 0.8  5.5  1250*600*900
Oxygen/Nitrogen WWND-150/4-10 150 0.4 1.0  11  1430*1030*1350
Oxygen/Nitrogen SWND-240/4-10 240 0.4 1.0  15  1500×1100×1620
Oxygen/Nitrogen VWY-120/5-10 120 0.5 1.0  7.5  1250*600*1000
Oxygen/Nitrogen SWY-150/4-16 150 0.4 1.6  15  1250*900*1480
Oxygen/Nitrogen WWN-100/4-25 100 0.4 2.5  15  1350*700*1200
Oxygen/Nitrogen WWN-120/6-30 120 0.6 3.0  15  1250*800*1200
Oxygen/Nitrogen WWN-120/6-45 120 0.6 4.5  18.5  1350*1100*1100
Oxygen/Nitrogen WWN-80/5-45 80 0.5 4.5  15  1350*700*1200
Oxygen/Nitrogen WWN-240/5-10 240 0.5 1.0  15 1350*800*1200
Oxygen/Nitrogen WWN-300/0.5-8-II 300 0.05 0.8  22*2 2500*1200*800
Oxygen/Nitrogen WWNFB-900/4-8-II 900 0.4 0.8  22*2 2600*1000*900
Oxygen/Nitrogen VWN-180/5-25-II 180 0.5 2.5  11*2 1500*1350*1100
Oxygen/Nitrogen WWN-200/3-18-II 200 0.3 1.8  11*2 1450*1350*1100
Oxygen/Nitrogen WWN-200/6-30-II 200 0.6 3.0  11*2 1600*1600*1200
Oxygen/Nitrogen WWFB-430/4-9 430 0.4 0.9  22  1500*1000*800

Successful cases


 

FAQ

FAQ:
Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

 

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24 Months
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China Good quality High-Pressure Oxygen Compressor 15-60nm3/H Air/Water-Cooled 4-Stage Compressed Oil-Free Medical and Industrial Use   with Good qualityChina Good quality High-Pressure Oxygen Compressor 15-60nm3/H Air/Water-Cooled 4-Stage Compressed Oil-Free Medical and Industrial Use   with Good quality
editor by CX 2024-04-24

Gas powered air compressor

As one of the gas powered air compressor manufacturers, suppliers, and exporters of mechanical products, We offer gas powered air compressor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of gas powered air compressor.

Recent Posts