China Professional Compact Small Scale 200bar Industrial Carbon Monoxide Mixed Gas Oil Free Diaphragm Compressor air compressor for car

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Click Here

Product Description

 

 Completely Oil-Free Reciprotating Diaphragm Compressor
( Blue Font To View Hyperlink)

 

Our company specialize in producing various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media type
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)
GD Model Simple Description
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.
Advantages
No leakage: the compressor membrane head is sealed by static “O” ring. The O “ring is made of elastic material, with long service life and no dynamic seal to ensure no leakage during gas compression.
Corrosion resistance: the compressor membrane head can be made of 316L stainless steel, the diaphragm is made of 301 stainless steel.
Small tightening torque: “O” ring seal, can reduce flange bolt tightening torque, reduce shutdown maintenance time.
Specfication:

Model GD-120/4-80 Remarks
Volume Flow Nm3/h 120 No-Standard
Working pressure Suction pressure: 0.4MPa No-Standard
  Exhaust pressure: 8.0MPa No-Standard
Cooling Method    Water-Cooled  No-Standard
Intake temperature °C 0~30  
Inlet pressure MPa 0.3~0.4  
Discharge temperature °C ≤45ºC  
Noise dB(A) ≤80  
Power/Frequence V/Hz 380/50 No-Standard
Motor Power Kw 22KW~200KW No-Standard
Crankshaft speed r/min 420  
Overall dimension L/mm 3000  
  W/mm 1600  
  H/mm 1400  

 

   Parameter Table Of  GD  Series Diaphragm Compressor
  Model Cooling water 
consumption
t/h
Volume Flow
Nm3/h
Suction pressure
(MPa)
Exhaust pressure
(MPa)
Dimension 
LxWxH(mm)
Weight
(t)
Motor Power 
(kW)
1 GD-120/4-80 3.0 120 0.4 8.0 3000x1600x1400   30
2 GD-130/0.98-11 3.0 130 0.098 1.1 3000x1800x1600 4.0 30
3 GD-150/2-20 3.0 150 0.2 2.0 3000x1800x1600 4.0 37
4 GD-100/0.1-5 4.0 100 0.01 0.5 2800X1500X1500 3.0 18.5
5 GD-100/5.5-200 5.0 100 0.55 20 3200X2000X1600 4.5 45
6 GD-80/0.12-4 5.0 80 0.012 0.4 2800x1600x 1500 3.8 15
7 GD-60/0.3-6 4.0 60 0.03 0.6 2800x1600x1500 4.0 15
8 GD-70/0.1-8 3.8 70 0.01 0.8 3000 x 1600×1250 5.0 18.5
9 GD-40/0.02-160 5.0 40 0.02 16 2800x1460x1530 3.0 22
10 GD-100/0.5-6 2.0 100 0.05 0.6 3000x2000x1560 6.0 18.5
11 GD-36/1-150 4.0 36 0.1 15 3000x1500x1500 4.0 45
12 GD-35/0.7-300 4.0 35 0.07 30 3000x1600x1500 4.0 22
13 GD-500/15-35 4.5 500 1.5 3.5 3000x2000x1700 4.0 45
14 GD-150/15-210 4.5 150 1.5 21 3200x1700x1600 4.0 45
15 GD-120/8-220 4.5 120 0.8 22 3200x1700x1600 3.8 45
16 GD-100/9 4.5 100 0.0 0.9 3200x1700x1800 4.5 22
17 GD-100/1.5-150 4.5 100 0.15 15 3200x1700x1800 4.5 45
18 GD-40/30 4.5 40 0.0 3.0 3200x1700x1800 4.0 18.5
19 GD-200/10-15-90 4.5 200 1.0-1.5 9.0 3200x1800x1600 4.0 37
20 GD-100/7-150 4.0 100 0.7 15 3000x1800x 1600 4.0 55
21 GD-25/-0.1-47 4.0 25 -0.01 4.7 3000x1800x1600 4.0 15
22 GD-45/0.5-100 4.0 45 0.05 10 3000x1800x1600 4.0 30
23 GD-30/0.1-160 4.0 30 0.01 16 3000x1800x1600 4.0 18.5
24 GD-120/2.5-70 4.0 120 0.25 7.0 3000x1800x1600 4.0 37
25 GD-135/10-210 4.0 135 1.0 21 3000x1600x1400 4.0 37
26 GD-60/40-350 4.5 60 4.0 35 3000x1800x1600 4.0 30
27 GD-95/10-350 4.0 95 1.0 35 3000x1600x1400 4.0 37
28 GD-220/11-90 4.0 220 1.1 9.0 3000x1800x1600 4.0 37
29 GD-300/15-220 4.5 300 1.5 22 3600x2200x1700 5.0 75
30 GD-300/13-210 5.0 300 1.3 21 3500x2300x1800 6.0 75
31 GD-120/12-350 6.5 120 1.2 35 3500x2300x1600 8.5 45
32 GD-165/10-250 8.0 165 1.0 25 3500x2300x1500 8.5 55
33 GD-120/8-350 6.5 120 0.8 35 3500x2300x1600 8.5 45
34 GD-800/210-320 8.0 800 21 32 3500x2300x1500 8.5 37
35 GD-420/8-39 6.5 420 0.8 3.9 3600x2500x1700 6.0 75
36 GD-370/20-200 4.5 370 2.0 20 3600x2200x1700 5.0 75
37 GD-350/18-210 4.5 350 1.8 21 3600x2200x1700 5.0 75
38 GD-300/8-120 4.5 300 0.8 12 3600 x 2200 x 1700 5.0 75
39 GD-308/4 10.0 308 0 0.4 4200x3200x2600 10.0 55
40 GD-180/8.5 5.0 180 0 0.85 4200x3200x2600 10.0 55

Principle: Reciprocating Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof, Corrosion-Proof
Mute: Low Noise
Lubrication Style: Oil-free
Drive Mode: Electric
Customization:
Available

|

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China Professional Compact Small Scale 200bar Industrial Carbon Monoxide Mixed Gas Oil Free Diaphragm Compressor   air compressor for carChina Professional Compact Small Scale 200bar Industrial Carbon Monoxide Mixed Gas Oil Free Diaphragm Compressor   air compressor for car
editor by CX 2023-11-10

Gas powered air compressor

As one of the gas powered air compressor manufacturers, suppliers, and exporters of mechanical products, We offer gas powered air compressor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of gas powered air compressor.

Recent Posts