China Professional Un Medical Custom Hfnc High Flow Oxygen Therapy Nasal Cannula with Medical Air Compressor air compressor oil

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Click Here

Product Description

Un Medical Custom Hfnc High Flow Oxygen Therapy Nasal Cannula with Medical Air Compressor

Model:HFNC-001

Adult / Infant HFNC Machine:

 

·Medical device treatment: In addition to drug treatment, respiratory support treatments relying on medical devices, such as oxygen therapy, invasive mechanical ventilation, extracorporeal membrane oxygenation (ECMO), and circulatory support are of much helpful to those the most serious cases of pneumonia. It also plays an important role in the treatment of critically ill patients. It is time to introduce our high flow oxygen blender for replacement. It is very helpful for the early infection cases and the recovery patients from critical stages.

 

·High Flow Nasal Cannula(HFNC) oxygen therapy is a form of non -invasive respiratory support, which comprises an air oxygen blender, an active humidifier, a single heated circuit and a nasal cannula. It delivers adequately heated and humidified medical gas up to 10-60L/min, and is considered to have a number of physiological effects: reduction of anatomical dead space, PEEP effect, constant fraction of inspired oxygen and good humidification. It is widely used in RICU and ICU.

Specification:
 

Adjustment Method of Oxygen Concentration Merchanical
FiO2 21%-100%
Flow 2-18LPM;1-10LPM and 10-120LPM
Pressure of gas source Air/Oxygen @ 0.3-0.4 Mpa
Blender Alarm When gas supply pressure difference > 0.1 Mpa
Blender Alarm Noise >57 dB(A)
Accuracy of FiO2 3%
Humidifier Supply Voltage/Frequency 220V/ 110V 50/60Hz
Humidifier Temperature monitoring 0-75ºC
Humidifier Heater Plate Over-temperature Cut Off 95±5ºC
Heater Wire(Max.) 22V-,2.73A, 60W, 50/60Hz
Humidifier Temperature control settings Heated wire mode(mode indicator lighted)
Temperature grade(with indicator status)  Continuous flow range  Delivered patient temperature
P1 (·○○)                                                            5L/min-60L/min            25-29ºC

P2 (··○)                                                            5L/min-60L/min            29-35ºC

P3 (···)                                                            5L/min-60L/min            35-39ºC

Non-heated wire mode(It is not recommended in adult HFNC. Operate manual of humidifier show details)

Configuration and Package:

Multiple Choices:

Applications and Custom Choices:

HFNC Machine without Medical Air Compressor(Above)
HFNC Machine with Medical Air Compressor(Below)

Exhibitions Image 

Factory Image 

Shipment and payment 

For the order which less than 20units, more of the customers choose the shipment by Express Courier or by Air Cargo.
Our normal Lead Time is within 5-7working days after payment.

Contact us:  Yuki. Cai

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Hfnc Machine
Function: Respiratory Therapy
Theory: Oxygen Therapy
Certification: CE, ISO13485
LCD Display: Without LCD Display
Group: Adult and Infant
Samples:
US$ 2800/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Noise Level of Gas Air Compressors?

The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:

1. Compressor Design:

The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.

2. Engine Type:

The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.

3. Operating Conditions:

The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.

4. Noise-Reducing Features:

Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.

5. Manufacturer Specifications:

Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.

6. Distance and Location:

The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.

It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.

Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China Professional Un Medical Custom Hfnc High Flow Oxygen Therapy Nasal Cannula with Medical Air Compressor   air compressor oilChina Professional Un Medical Custom Hfnc High Flow Oxygen Therapy Nasal Cannula with Medical Air Compressor   air compressor oil
editor by CX 2024-02-11

Gas powered air compressor

As one of the gas powered air compressor manufacturers, suppliers, and exporters of mechanical products, We offer gas powered air compressor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of gas powered air compressor.

Recent Posts